Abstract

Cloud detection is an important pre-processing step to derive operational products from meteorological satellites. This work presents a new cloud-detection algorithm with Meteosat Second Generation (MSG) images, operative at global scale. The algorithm takes advantage of the spectral and temporal resolution of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor. The algorithm is fully automatic in all its stages, including the thresholds definition by means of a self-learning methodology. These properties remove the need for ancillary data and restrictions in the area of application. This algorithm has been used in order to generate cloud masks during 2009. These cloud masks have been compared to the masks obtained with the National Aeronautics and Space Administration algorithm MOD35 with Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) images and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) algorithm for MSG–SEVIRI in Spain territory. The result shows an 88% agreement with EUMETSAT and a better than 83% agreement with the MOD35 algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.