Abstract

Image processing techniques are applied in many fields of science. This study aims to detect tumors in the foot and create 3D models via computed tomography (CT), as well as to produce biometric data. 1 039 CT images were obtained from a server. The parameters used were a collimation of 64 detectors, a scanning thickness of 0,5-3 mm, and a pixel size of 512 x 512, with a radiometric resolution of the 16-bit gray levels. Noise reduction, segmentation, and morphological analysis were performed on CT scans to detect bone tumors. In addition, this study used digital image processing techniques to create a virtual three-dimensional (3D) model of bone tumors. The performance of our proposal was evaluated by analyzing the receptor operating characteristics (ROC). According to the results, the sensitivity, specificity, and precision in tumor detection were 0,96, 1, and 0,98%, respectively, with a 0,99% average F-measure. Radiologist reports were used for the sake of comparison. The proposed technique for detecting bone tumors of the foot via CT can help radiologists with its increased precision, sensitivity, specificity, and F-measure. This method could improve the diagnosis of foot and ankle tumors by allowing for the multidirectional quantification of abnormalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.