Abstract

An automated dynamic chamber system was first developed to simultaneously measure the HONO flux and NOx flux. The new dynamic chamber system was applied to field observation, and the HONO and NOX exchange flux of farmland in the Huaihe River Basin was obtained for the first time. The performance of the dynamic chamber system was verified in the field. In the field observation, the diurnal variations of the HONO fluxes and NO fluxes before and after a rainfall event exhibited two different trends. Before the rainfall and in the latter stage after the rainfall, the maxima of the HONO fluxes and NO fluxes occurred in the morning, then decreased gradually. However, during the early stage after the rainfall, the HONO fluxes and NO fluxes gradually increased in the morning and reached their maximum values in the afternoon. During the measurement period, the maximum HONO flux was 7.69 ng N m−2 s−1 and the maximum NO flux was 34.52 ng N m−2 s−1. There was no significant correlation between HONO flux and temperature before the rainfall and in the latter stage after the rainfall period, although the correlation coefficient (R) between HONO flux and temperature reached 0.78 in the early stage after the rainfall period, and the R between NO flux and HONO flux reached more than 0.6 before and after rainfall periods. The HONO flux of fresh soil samples were the same order of magnitude as that of field observations. The field results indicate that soil emissions are an important source of atmospheric HONO during the crop growth stage. Negative NO2 fluxes were found in most observation periods, and there were significant negative linear correlations between NO2 fluxes and atmospheric NO2 concentrations. The R between ambient NO2 concentration and NO2 flux was 0.79, and the compensation point of NO2 was 5 ppbv.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.