Abstract

The functions of life are accomplished by systems exhibiting nonlinear kinetics: autocatalysis, in particular, is integral to the signal amplification that allows for biological information processing. Novel synthetic autocatalytic systems provide a foundation for the design of artificial chemical networks capable of carrying out complex functions. Here we report a set of Fe(II)4L6 cages containing BODIPY chromophores having tuneable photosensitizing properties. Electron-rich anilines were observed to displace electron-deficient anilines at the dynamic-covalent imine bonds of these cages. When iodoaniline residues were incorporated, heavy-atom effects led to enhanced (1)O2 production. The incorporation of (methylthio)aniline residues into a cage allowed for the design of an autocatalytic system: oxidation of the methylthio groups into sulfoxides make them electron-deficient and allows their displacement by iodoanilines, generating a better photocatalyst and accelerating the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.