Abstract

Adaptive laboratory evolution (ALE) is a useful metabolic engineering strategy, which allows the selection of the microorganisms with beneficial phenotype through accumulative beneficial mutations among genetic variations occurrencely. Following ALE strategy, a rational constructed Escherichia coli strain DQ101 for fatty acids synthesis was adaptively evolved for 90days with increasing [C4mim]Cl concentration from 1% to 7% (w/v). The evolved strain DQ102 reached a final OD600 of 4.93 at the end of the 24h culture with 7% (w/v) ionic liquid. DQ102/pDQTES with a thioesterase ‘TesA overexpression could produce 1.12g/L fatty acid with a productivity of 0.023g/L-h from ionic liquid-treated bamboo hydrolysate. With another β-hydroxyacyl-ACP dehydratases (fabZ) overexpression, DQ102/pDQTESZ could reach a higher concentration of 2.29g/L with a productivity of 0.048g/L-h. These results indicated that ALE could be implemented as a useful tool for metabolic engineering and production of bio-fuels, as well as commodity and specialty chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.