Abstract
PurposeThe purpose of this paper is to investigate a novel approach toward electromagnetic launch.Design/methodology/approachThe field of linear electromagnetic acceleration aims at accelerating macroscopic masses (up to several kg) to speeds in excess of 2 km/s. This can be achieved using accelerators of the railgun type. The innovation of this work lies in the use of multiphase current instead of the classically used quasi-direct current (DC). The approach taken is to work out in a first step the potential performance of such a configuration, for example, by showing that a constant propulsive force can be realized. Next, the necessary changes for the system setup were carefully analyzed. Both the accelerator and the power supply have to be considerably modified with regard to the classical approach.FindingsThorough analysis of the electromagnetic behavior of the launcher including nonlinear effects lead to an innovative system design which is considered to be the main finding of the work presented here. Moreover, a prototype was build. The preliminary experimental results obtained are in very good agreement with corresponding simulations validating the underlying modeling approach.Research limitations/implicationsFor the purpose of this paper, power levels of only 450 kVA are considered. However, this research can be used to design more powerful devices in the future.Originality/valueWhile DC powered railguns are modeled very well in a variety of papers, the use of multiphase alternating current is not very well discussed yet. It could be of value for launch scenarios, for which very high speeds are required such as the launch of micro satellites to space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.