Abstract

The rutting depth is an important index to evaluate the damage degree of the pavement. Therefore, establishing an accurate rutting depth prediction model can guide pavement design and provide the necessary basis for pavement maintenance. However, the sample size of pavement rutting depth data is small, and the sampling is not standardized, which makes it hard to establish a prediction model with high accuracy. Based on the data of RIOHTrack’s asphalt pavement structure, this study builds a reliable data-augmented model. In this paper, different asphalt rutting data augmented models based on Gaussian radial basis neural networks are constructed with the temperature and loading of asphalt pavements as the main features. Experimental results show that the method outperforms classical machine learning methods in data augmentation, with an average root mean square error of 3.95 and an average R-square of 0.957. Finally, the augmented data of rutting depth is constructed for training, and multiple neural network models are used for prediction. Compared with unaugmented data, the prediction accuracy is increased by 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.