Abstract

A new mixed variational formulation for the Navier--Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier--Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.