Abstract

Background: Metabolic flexibility describes the body's adaptive ability to changing metabolic or energy requirements. Objective: To determine the possibility of detecting dysmetabolism based on bioimpedancometry (systemic dysmetabolism) and metabolic flexibility (local dysmetabolism) by the intensity of switching from the glucogenic to the ketogenic variant of energy supply. Biological (metabolic) clock was calculated by the difference between chronological age (CHR-age) minus biological (metabolic) age (MET-age), as more than 1year difference. Material and methods: The biological age was determined with tetrapolar bioimpedansometry. The amino acid L-lysine was taken orally to induce ketosis, the content of ketones in the exhaled air was dynamically recorded for 3 hours. Results: Group with younger MET-age FM(fate mass): r = -0,36; p = 0,04( y = 18,1 - 0,08*x) and intracellular fluid (ICF): r = -0,5 p = 0,002( y = 1796,2 - 8,9*x) and group with older MET-age - ICF: r = -0,32; p = 0,074 (y = 24,38 - 0,08*x) (not significant or loss of reliability), FM: r = -0,36; p = 0,04 (y = 18,1 - 0,08*x). At the same time, highly sensitive CRP (hsCRP) above 5 mg/l was found much more often in group (26% v.s.2%, Chi-square (df=1) - 6,50, p= 0,01), as well as cholesterol over 6.5 mmol/l. Moreover, hsCRP significant more higher in older MET-age group: mean - 3,5 (95%CI =2,3 - 4,7) v.s. 1,9 (95%CI=1,5 - 2,3). These data clearly indicate the presence metabolic dysfunction (systemic dysmetabolism) in the group with premature metabolic (biological) age. A significant relationship was found between the degree of hepatic ketosis and the difference between biological and chronological age, i.e. younger age was characterized by higher metabolic flexibility. The KETO-MET-younger group (group-2) has significantly more Body Cells Mass (BCM) proportion (50,5 (95%CI =50,0-51,1) v.s. 43,9(95%CI =42,8-45,0) ) and less content of Fat Mass (in kg) (14,7 (95%CI =13,7-15,6) v.s. 27,9(95%CI =25,3-30,5), according to the results of BIM-V. KETO-Lysine test revealed a significantly more frequent increase in blood ALT activity (more than 30 IU) in the older MET-age group (41% vs. 5%), Conclusions: The results deepen the scientific understanding of the metabolic flexibility assessment according to the original indicator - the induction of physiological ketosis by an amino acid metabolized in the liver, and make it possible to implement a personalized approach in the diagnosis and differentiation of metabolic disorders

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.