Abstract

In the course of immortalization, hepatocyte cell lines lose their original differentiated functions, such as ammonia removal and urea formation, drug metabolism, serum protein synthesis, etc. (Enosawa et al., Cell Transplant. 5:S39-S40; 1996). With the aim of adding lost or deficient functions and producing cell lines for the bioreactor of a hybrid artificial liver, rat glutamine synthetase (GS) gene was transfected into Chinese hamster ovary (CHO) cells, because it is able to lower the ammonia level. The GS gene-inserted pSV2 plasmid was transfected into the CHO-K1 line by electroporation. Transfected CHO (GS-CHO) cells were cultured in a glutamine-free medium containing ammonia, glutamic acid, and the GS inhibitor methionine sulfoximine (MSX). The MSX concentration was increased stepwise from 25 μmol/L to 1600 μmol/L to amplify the GS gene. In several GS-CHO sublines resistant to 300–1600 μmol/L of MSX, the specific activities of GS were increased from 0.2 × 10 −4 to 1.7-2.9 × 10 −4 unit/10 6 cells. When the amplified GS-CHO cells were cultured in the ammonia-containing medium, a slow but steady decrease of the ammonia level was observed when the level was high. Finally, the prospect of genetically modulated cells for bioreactors in the hybrid artificial liver is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.