Abstract

Although Fe3O4 nanoparticles were early reported to outperform horseradish peroxidase (HRP), recent studies suggested that this material bears a very poor activity instead. Here, we resolve this disagreement by reviewing the definition of descriptors used and provide an atomic view into the origin of Fe3O4 nanoparticles as peroxidase mimetics. The redox between H2O2 and Fe(II) sites on the Fe3O4 surface was identified as the key step to producing OH radicals for the oxidation of colorimetric substrates. This mechanism involving free radicals is distinct from that of HRP oxidizing substrates with a radical retained on its Fe-porphyrin ring. Surprisingly, the distribution and chemical state of Fe species were found to be very different on single- and polycrystalline Fe3O4 nanoparticles with the latter bearing not only a higher Fe(II)/Fe(III) ratio but also a more reactive Fe(II) species at surface grain boundaries. This accounts for the unexpected gap in the catalytic constant (kcat) observed for this material in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.