Abstract

Neural conversion of androgen to estrogen by aromatase is an important step in the development and expression of masculine behavior in mammals and birds. In contrast to the low telencephalic levels of aromatase in adult mammals and nonsongbirds, the zebra finch telencephalon possesses high aromatase activity. This study maps, by in situ hybridization, cells that express aromatase mRNA in the adult zebra finch telencephalon, diencephalon, midbrain, and pons. High aromatase mRNA expression was observed in the caudal neostriatum, limbic archistriatum, and hypothalamus. The hippocampus, parahippocampal area, and hyperstriatum accessorium contained cells expressing moderate amounts of aromatase message. Weakly labeled cells were found in the rostral neostriatum, lobus parolfactorius, and mesencephalic reticular formation. These findings are consistent with aromatase activity measurements of zebra finch tissue and document with anatomical precision both the widespread expression of aromatase mRNA in the brain and novel sites of brain aromatase. This study identifies the caudal neostriatum as a major site of telencephalic aromatase. A previous survey (Gahr et al., 1993: J. Comp. Neurol. 327:112-122) of several avian species found that the presence of estrogen receptors in parts of the caudal neostriatum is unique to songbirds, which are the only birds to possess the elaborated telencephalic song system. Together, these findings suggest that the heightened estrogen synthesis and estrogen sensitivity of the passerine caudal neostriatum may have some functional relation with the telencephalic circuits responsible for song.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.