Abstract
We present an asynchronous spacetime discontinuous Galerkin (aSDG) method for time domain electromagnetics in which space and time are directly discretized. By using differential forms we express Maxwell's equations and consequently their discontinuous Galerkin discretization for arbitrary domains in spacetime. The elements are discretized with electric and magnetic basis functions that are discontinuous across all inter-element boundaries and can have arbitrary high and per element spacetime orders. When restricted to unstructured grids that satisfy a specific causality constraint, the method has a local and asynchronous solution procedure with linear solution complexity in terms of the number of elements. We numerically investigate the convergence properties of the method for 1D to 3D uniform grids for energy dissipation, an error relative to the exact solution, and von Neumann dissipation and dispersion errors. Two dimensional simulations demonstrate the effectiveness of the method in resolving sharp wave fronts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.