Abstract

Oxygen plays an important role in the metabolism of cells inside the human body. The transfer of oxygen from blood to tissue takes place in capillaries through a diffusion process. The capillary-tissue region is usually represented by the so-called Krogh cylinder model, in which the distribution of the oxygen concentration in a tissue region leads to a diffusion equation with oxygen consumption rates following the Michaelis-Menten kinetics. In this paper, we restrict ourselves to the steady state case and solve the equation analytically by means of asymptotic expansion for a particular limit of the oxygen consumption rate. Results show that there exists a critical ratio between supply and consumption of oxygen in the tissue region in order to fulfill the cell’s oxygen requirements. Above from this critical ratio, we also found a critical distance in the tissue region above which the oxygen concentration vanishes. We compared our asymptotic results with numerical simulations, which turned out to be quite in agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.