Abstract

An anisotropic elastoplastic bounding surface model with non-associative flow rule is developed for simulating the mechanical behavior of different types of clays. The non-associative flow rule allows for the simulation of not only strain-hardening but also strain-softening response. The theoretical framework of the model is given, followed by the verification of the model as applied to the experimental results of a strain-hardening Kaolin tested under different undrained stress paths. The undrained behavior of Boston Blue clay, which exhibits a strain-softening behavior, is also simulated. It is shown that the non-associative nature of the model gives more accurate results than those of the same model employing an associative flow rule, especially for normally consolidated Kaolin specimens. The results show that the model is also capable of simulating the strain-softening behavior of Boston blue clay with reasonable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.