Abstract

Dendritic integration of excitatory and inhibitory inputs is critical for neuronal computation, but the underlying rules remain to be elucidated. Based on realistic modeling and experiments in rat hippocampal slices, we derived a simple arithmetic rule for spatial summation of concurrent excitatory glutamatergic inputs (E) and inhibitory GABAergic inputs (I). The somatic response can be well approximated as the sum of the excitatory postsynaptic potential (EPSP), the inhibitory postsynaptic potential (IPSP), and a nonlinear term proportional to their product (k*EPSP*IPSP), where the coefficient k reflects the strength of shunting effect. The k value shows a pronounced asymmetry in its dependence on E and I locations. For I on the dendritic trunk, k decays rapidly with E-I distance for proximal Es, but remains largely constant for distal Es, indicating a uniformly high shunting efficacy for all distal Es. For I on an oblique branch, the shunting effect is restricted mainly within the branch, with the same proximal/distal asymmetry. This asymmetry can be largely attributed to cable properties of the dendrite. Further modeling studies showed that this rule also applies to the integration of multiple coincident Es and Is. Thus, this arithmetic rule offers a simple analytical tool for studying E-I integration in pyramidal neurons that incorporates the location specificity of GABAergic shunting inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.