Abstract

3D terrains used in digital animations and videogames are typically created by several collaborators with a single-user application, which constrains them to update the shared terrain from their PCs, using a turn-taking strategy. Moreover, collaborators have to visualize the terrain through 2D views, confusing novice users when conceiving its shape in 3D. In this article, we describe an architecture for collaborative applications, which allow co-located users to sketch a terrain using their mobile devices concurrently. Two interaction modes are supplied: the standard one and an augmented reality-based mode, which helps collaborators understand the 3D terrain shape. Using the painting with brushesparadigm, users can modify the terrain while visualizing its shape evolution through the camera of their devices. Work coordination is promoted by enriching the 3D space with each collaborator’s avatar, which provides awareness information about identity, location, and current action. We implemented a collaborative application from this architecture that was tested by groups of users, who assessed its hedonic and pragmatic qualities in both interaction modes and compared them with the qualities of a similar Web terrain editor. The results showed that the augmented reality mode of our prototype was considered more attractive and usable by the participants.

Highlights

  • Augmented Reality (AR) is not a new topic, but a significant increase in its popularity has been seen in recent years

  • We explain the tests conducted with several groups of users who conjointly sketched 3D surfaces using two tools: (1) our ShAREdT-based collaborative application running on mobile devices, and (2) a free web browser desktop application called WebGL terrain editor [14], which is neither AR nor collaborative but offers brushbased operations that are akin to our prototype

  • The purpose of the tests described below is to compare the usability and user experience: (1) between the WebGL terrain editor and the ShAREdT-based application in both the standard and AR-based interaction modes, and (2) between these two forms of interaction provided by our prototype

Read more

Summary

Introduction

Augmented Reality (AR) is not a new topic, but a significant increase in its popularity has been seen in recent years. If starting from the premise that the main objective of AR is to integrate the real world with the digital one, new technologies have allowed users to have more complex and positive experiences that comply with this goal [2] This is a consequence of the fact that multiple developers have focused their efforts on integrating AR with mobile devices, since they offer considerable computing power with the advantages of being portable and affordable for many people [3]. Mobile devices have allowed work contexts to be transformed into highly interactive environments, changing our way of viewing information and interacting with other people, creating experiences beyond the classic scenario of a single-user with a single-computer [3] This technological democratization poses serious problems, e.g., complex systems (like 3D modeling software) are typically used by people with advanced knowledge, or experts familiar with a particular way of working and handling data. This imposes an entry barrier for people involved in solving a complex problem, so it is essential to facilitate the understanding of these systems by people with varying degrees of experience

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.