Abstract

Energetic reasoning is one of the most powerful propagation algorithms in cumulative scheduling. In practice, however, it is not commonly used because it has a high running time and its success highly depends on the tightness of the variable bounds. In order to speed up energetic reasoning, we provide an easy-to-check necessary condition for energetic reasoning to detect infeasibilities. We present an implementation of energetic reasoning that employs this condition and that can be parametrically adjusted to handle the trade-off between solving time and propagation overhead. Computational results on instances from the PSPLib are provided. These results show that using this condition decreases the running time by more than a half, although more search nodes need to be explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.