Abstract

Determining the exact number of primes at large magnitudes is computationally intensive, making approximation methods (e.g., the logarithmic integral, prime number theorem, Riemann zeta function, Chebyshev’s estimates, etc.) particularly valuable. These methods also offer avenues for number-theoretic exploration through analytical manipulation. In this work, we introduce a novel approximation function, ϕ(n), which adds to the existing repertoire of approximation methods and provides a fresh perspective for number-theoretic studies. Deeper analytical investigation of ϕ(n) reveals modified representations of the Chebyshev function, prime number theorem, and Riemann zeta function. Computational studies indicate that the difference between ϕ(n) and the logarithmic integral at magnitudes greater than 10100 is less than 1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.