Abstract

Epistemic uncertainty analysis is an essential feature of any model application subject to ‘state of knowledge’ uncertainties. Such analysis is usually carried out on the basis of a Monte Carlo simulation sampling the epistemic variables and performing the corresponding model runs. In situations, however, where aleatory uncertainties are also present in the model, an adequate treatment of both types of uncertainties would require a two-stage nested Monte Carlo simulation, i.e. sampling the epistemic variables (‘outer loop’) and nested sampling of the aleatory variables (‘inner loop’). It is clear that for complex and long running codes the computational effort to perform all the resulting model runs may be prohibitive. Therefore, an approach of an approximate epistemic uncertainty analysis is suggested which is based solely on two simple Monte Carlo samples: (a) joint sampling of both, epistemic and aleatory variables simultaneously, (b) sampling of aleatory variables alone with the epistemic variables held fixed at their reference values. The applications of this approach to dynamic reliability analyses presented in this paper look quite promising and suggest that performing such an approximate epistemic uncertainty analysis is preferable to the alternative of not performing any.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.