Abstract

The approximate deconvolution model (ADM) for the large-eddy simulation of incompressible flows is detailed and applied to turbulent channel flow. With this approach an approximation of the unfiltered solution is obtained by repeated filtering. Given a good approximation of the unfiltered solution, the nonlinear terms of the filtered Navier–Stokes equations can be computed directly. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation. Large-eddy simulations are performed for incompressible channel flow at Reynolds numbers based on the friction velocity and the channel half-width of Reτ=180 and Reτ=590. Both simulations compare well with direct numerical simulation (DNS) data and show a significant improvement over results obtained with classical subgrid scale models such as the standard or the dynamic Smagorinsky model. The computational cost of ADM is lower than that of dynamic models or the velocity estimation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.