Abstract

We propose a numerical method to verify the existence and local uniqueness of solutions to nonlinear elliptic equations. We numerically construct a set containing solutions which satisfies the hypothesis of Banach's fixed point theorem in a certain Sobolev space. By using the finite element approximation and constructive error estimates, we calculate the eigenvalue bound with smallest absolute value to evaluate the norm of the inverse of the linearized operator. Utilizing this bound we derive a verification condition of the Newton-Kaiitorovich type. Numerical examples are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.