Abstract

This paper describes an approach to learning an indoor robot navigation task through trial-and-error. A mobile robot, equipped with visual, ultrasonic and laser sensors, learns to servo to a designated target object. In less than ten minutes of operation time, the robot is able to navigate to a marked target object in an office environment. The central learning mechanism is the explanation-based neural network learning algorithm (EBNN). EBNN initially learns function purely inductively using neural network representations. With increasing experience, EBNN employs domain knowledge to explain and to analyze training data in order to generalize in a more knowledgeable way. Here EBNN is applied in the context of reinforcement learning, which allows the robot to learn control using dynamic programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.