Abstract

The rates of photosynthesis, respiration and carbon excretion by the cyanobacteriumOscillatoria rubescens D.C. were estimated at a range of light intensities between 0 and 60 μE m−2 s−1 (μmol photon m−2 s−1) using the14C method. A model of the evolution of cell carbon concentration based on the Hobsonet al. (1976) equations and taking excretion into account is presented. This model predicts that the sum of respiration and excretion rates increases more rapidly with light than the rate of photosynthesis and therefore maximum growth of theO. rubescens strain under study should be obtained at low light intensities, approximately 20 μE m−2 s−1 . Light rapidly increases the excretion rate and so induces a deficit in the carbon balance of the cell. In addition, the simultaneous increase in respiration rate, possibly due to photorespiration, contributes to carbon depletion at high irradiances. Thus, this model explains some of our observations, particularly the fact that growth is saturated at lower light intensities than photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.