Abstract

Till date, fabrication of piezoelectric nanogenerator (PNG) with highly durable, high power density, and high energy conversion efficiency is of great concern. Here a flexible, sensitive, cost effective hybrid piezoelectric nanogenerator (HPNG) developed by integrating flexible steel woven fabric electrodes into poly(vinylidene fluoride) (PVDF)/aluminum oxides decorated reduced graphene oxide (AlO‐rGO) nanocomposite film is reported where AlO‐rGO acts as nucleating agent for electroactive β‐phase formation. The HPNG exhibits reliable energy harvesting performance with high output, fast charging capability, and high durability compared with previously reported PVDF based PNGs. This HPNG is capable for harvesting energy from a variety and easy accessible biomechanical and mechanical energy sources such as, body movements (e.g., hand folding, jogging, heel pressing, and foot striking, etc.) and machine vibration. The HPNG exhibits high output power density and energy conversion efficiency, facilitating direct light on different color of several commercial light‐emitting diodes instantly and powers up many portable electronic devices like wrist watch, calculator, speaker, and mobile liquid crystal display (LCD) screen through capacitor charging. More importantly, HPNG retains its performance after long compression cycles (≈158 400), demonstrating great promise as a piezoelectric energy harvester toward practical applications in harvesting biomechanical and mechanical energy for self‐powered systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.