Abstract
This paper deals with nonnegative nonsmooth generalized complementarity problem, denoted by GCP(f,g). Starting with H-differentiable functions f and g, we describe H-differentials of some GCP functions and their merit functions. We show how, under appropriate conditions on H-differentials of f and g, minimizing a merit function corresponding to f and g leads to a solution of the generalized complementarity problem. Moreover, we generalize the concepts of monotonicity, P 0-property and their variants for functions and use them to establish some conditions to get a solution for generalized complementarity problem. Our results are generalizations of such results for nonlinear complementarity problem when the underlying functions are C 1, semismooth, and locally Lipschitzian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.