Abstract
An estimation method for unknown parameters in the initial conditions and the potential of a quantal system using the stochastic interpretation of quantum mechanics and some results in system theory are presented. According to this interpretation the possible trajectories of a particle through coordinate space may be represented by the realization of a stochastic process that satisfies a stochastic differential equation. The drift term in this equation is derived from the wave function and consequently contains all unknown parameters in the initial conditions and the potential. The main assumption of the paper is that a continuous sequence of position measurements on the trajectory of the particle can be identified with a realization of this stochastic process over the corresponding period of time. An application of the stochastic filtering theorems subsequently provides a minimum variance estimate of the unknown parameters in the drift conditional on this continuous sequence of measurements. As simple illustrations, this method is used to obtain estimates for the initial momentum of a free particle given measurements on its trajectory and to construct an estimator for the unknown parameters in a harmonic potential. It is shown that an optimal estimator exists if the stochastic processes are associated with a wave function from a potential of the Rellich type. In addition the a posteriori probability density of the parameters in the quantal system is calculated, assuming that all parameters involved prescribe a Rellich potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.