Abstract

Nitrogen (N) is an essential element that plays an important role in crop biomass accumulation and quality formation. Increased crop yield is relied on excessive application of fertilizers, which usually leads to environmental pollution and unsustainable development. Thus, identification and characterization of genes involved in promoting nitrogen use efficiency is of high priority in crop breeding. The activity of nitrate reductase (NR) plays a critical role in nitrogen metabolism. In model plant Arabidopsis, NITRATE REDUCTASE 2 (NIA2), one of the two NRs, is responsible for about 90% of the NR activity. In this study, MdNIA2 gene in apple (Malus domestica) genome was screened out and identified by using AtNIA2 as bait. Phylogenetic analysis revealed that MdNIA2 had the closest evolutionary relationship with MbNIA from Malus baccata. Ectopic expression of MdNIA2 in Arabidopsis elevated the nitrogen use efficiency and increased root hair elongation and formation, resulting in promoted plant growth. Furthermore, the overexpression of MdNIA2 improved salt and drought tolerance in transgenic Arabidopsis and improved the salt tolerance of transgenic apple callus, and MdNIA2-reagualted NO metabolism might contribute to the abiotic stress tolerance. Overall, our data indicate the critical role of MdNIA2 in regulating nitrogen utilization efficiency and abiotic stress responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.