Abstract

Metazoan meiofauna were studied in replicated multiple-corer samples obtained at a bathyal site (1320–1360 m depth) in the Porcupine Seabight (51°36′N 13°00′W) before (April) and after (July) the delivery to the seafloor of a phytodetrital pulse originating from the 1982 spring bloom. In all samples the metazoan meiofauna was dominated by nematodes; harpacticoid copepods and their nauplii were the second most abundant taxon. Population densities and biomass were very similar in both sample sets, the only significant differences being in the numbers of ostracods (higher in April) and nauplii (higher in July). Furthermore, vertical distribution patterns in the top 5 cm of sediment indicate that the meiofauna did not migrate towards the sediment surface following the phytodetrital pulse. The lack of a metazoan meiofaunal response contrasts with published evidence, based on the same samples, for a substantial increase in the foraminiferal abundance following the sedimentation event. Thus our results suggest that metazoans (as a whole) fail to exploit and utilize phytodetritus as rapidly as foraminifera. This probably reflects the energetic expense of egg production coupled with frequently slower rates of somatic growth among metazoans. In addition, foraminifera may outcompete metazoans for detrital food because they possess extremely efficient food-gathering organelles (granuloreticulate pseudopodia) and are able to raise their levels of metabolic activity very rapidly. However, metazoan responses at the species level, or over longer time periods (>3 months), would not have been detected and so remain a possibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.