Abstract

To fulfill the mission of targets recognition over sea, a bi-satellite cluster composed of an autonomous low resolution satellite (LRS) leading the formation for targets detection and a trailing agile high resolution satellite (HRS) for targets recognition is considered. This paper focuses on the development of a method that is able to generate a schedule plan onboard the HRS taking into account the information received from the LRS, which amounts to solving an agile earth observation satellite (AEOS) scheduling problem. The main contributions of this paper are two folds: a mathematical model for formulating the AEOS scheduling problem, and an anytime branch and bound algorithm for problem solution. Experimental results on a set of representative scenarios show that the proposed algorithm is effective which promotes significantly the bi-satellite cluster to improve the efficiency of targets recognition over sea as opposed to traditional methods where a large number of satellites are required to work coordinately. In particular, in a scenario over a 500km×2000km sea area involving 25 targets, the performance of the bi-satellite cluster amounts to the coordination of 30 high resolution satellites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.