Abstract

The high incidence and mortality rates associated with acute and chronic wound infections impose a significant burden on global healthcare systems. In terms of the management of wound infection, the reconstruction and regeneration of skin appendages are essential for the recovery of mechanical strength and physiological function in the regenerated skin tissue. Novel therapeutic approaches are a requisite for enhancing the healing of infected wounds and promoting the regeneration of skin appendages. Herein, a novel antimicrobial microneedle patch has been fabricated for the transdermal controlled delivery of adipose tissue-derived apoptotic vesicles (ApoEVs-AT@MNP) for the treatment of infected wounds, which is expected to achieve high-quality scarless healing of the wound skin while inhibiting the bacteria in the infected wound. The microneedle patch (MNP) system possesses adequate mechanical strength to penetrate the skin, allowing the tips to remain inside tissue for continuous active release of biomolecules, and subsequently degrades safely within the host body. In vivo transplantation demonstrates that ApoEVs-AT@MNP not only inhibits bacterial proliferation in infected wounds but also significantly promotes effective and rapid scarless wound healing. Particularly noteworthy is the ability of ApoEVs-AT@MNP to promote the rapid formation of mature, evenly arranged hair follicles in infected wounds, observed as early as 8 days following implantation, which is essential for the restoration of skin function. This rapid development of skin appendages has not been reported this early in previous studies. Therefore, ApoEVs-AT@MNP has emerged as an excellent, painless, non-invasive, and highly promising treatment for infected wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.