Abstract
This paper proposes a trajectory tracking control method combining extended Kalman filter (EKF) and robust tube-based model predictive control (RTMPC) methods to improve the anti-disturbance capability during lane-changing maneuver of automated vehicles. A time-based quintic polynomial function is introduced for the implementation of trajectory planning to obtain the desired reference trajectory. The planned trajectory is input to the nominal system-oriented model predictive controller (MPC) in RTMPC for optimization to obtain the optimal control of the nominal system. The EKF collects the state measurements of the current instant and the optimal state estimates of the previous instant, and performs filtering to obtain the optimal state estimates of the current instant. The optimal estimate of the current state and the current state of the nominal system are input into the auxiliary control law of RTMPC to obtain the control of the actual system. Comparative numerical simulation experiments are conducted to analyze robustness and sensitivity of the proposed method. The results show that the control method combining EKF and RTMPC can optimize the trajectory tracking performance of the vehicle system, especially in the lateral displacement and the yaw-rate control. When the amplitude of measurement noise reaches the maximum, the optimization effect of lateral control is most significant in experiments. And the optimization effect in the control of lateral displacement and yaw angle continues to enhance with the increase of measurement disturbance. Therefore, this study can provide a reference for the anti-interference lane change trajectory tracking strategy of automated vehicles in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.