Abstract

Abstract Inspired by ant foraging, as well as modeling of the feature map and measurements as random finite sets, a novel formulation in an ant colony framework is proposed to jointly estimate the map and the vehicle trajectory so as to solve a feature-based simultaneous localization and mapping (SLAM) problem. This so-called ant-PHD-SLAM algorithm allows decomposing the recursion for the joint map-trajectory posterior density into a jointly propagated posterior density of the vehicle trajectory and the posterior density of the feature map conditioned on the vehicle trajectory. More specifically, an ant-PHD filter is proposed to jointly estimate the number of map features and their locations, namely, using the powerful search ability and collective cooperation of ants to complete the PHD-SLAM filter time prediction and data update process. Meanwhile, a novel fast moving ant estimator (F-MAE) is utilized to estimate the maneuvering vehicle trajectory. Evaluation and comparison using several numerical examples show a performance improvement over recently reported approaches. Moreover, the experimental results based on the robot operation system (ROS) platform validate the consistency with the results obtained from numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.