Abstract

Orthogonal maps are two-dimensional mappings that are solutions of the so-called origami problem obtained when folding a paper. These mappings are piecewise linear, and the discontinuities of their gradient form a singular set composed of straight lines representing the folding edges. The proposed algorithm relies on the minimization of a variational principle discussed in Caboussat et al. (2019). A splitting algorithm for the corresponding flow problem derived from the first-order optimality conditions alternates between local nonlinear problems and linear elliptic variational problems at each time step. Anisotropic adaptive techniques allow to obtain refined triangulations near the folding edges while keeping the number of vertices as low as possible. Numerical experiments validate the accuracy and efficiency of the adaptive method in various situations. Appropriate convergence properties are exhibited, and solutions with sharp edges are recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.