Abstract

Clines in intraspecific genetic variation are frequently associated with an environmental transition. Here, divergence among nucleotide sequences of two nuclear loci, cytosolic and mitochondrial malate dehydrogenase (cMDH and mMDH, respectively), is described, in a multitrait cline over a distance of ca. 3 km where shell phenotype, allozyme, mitochondrial DNA haplotype, and centric fusion (Robertsonian translocations) frequencies covary with temperature and humidity and change abruptly in a continuous population of the dog-whelk (Nucella lapillus), a common intertidal snail of the north temperate Atlantic. Protein electrophoresis has already shown two alleles of mMDH varying from fixation of one allele to near fixation of the other, whereas cMDH appears to be monomorphic. The results of this study show a striking disparity in nucleotide sequence divergence among alleles at the two loci, with extreme molecular differentiation in one of them. Four alleles of cMDH were found to have nucleotide and amino acid sequence divergences of 0.4% and 0.3%, respectively. In contrast, the two mMDH cDNA alleles differed by 23% and 20% at the nucleotide and amino acid levels, respectively. Analysis of a 91-bp partial nucleotide sequence of mMDH from Nucella freycineti, the closest relative of N. lapillus, revealed two similar alleles and indicated that the divergence in mMDH in N. lapillus represents an ancient transpecific polymorphism in these Nucella. Together with earlier studies on variation in N. lapillus, it is argued that the polymorphism in mMDH and the clines in N. lapillus represent the presence of two persistent coadapted gene complexes, multitrait coevolving genetic solutions to environmental variation, which may presently enable this snail to exploit a diverse environment successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.