Abstract

To locate multiple sources through time-difference-of-arrival (TDOA) measurements, existing algorithms generally require the matching relationship between measurements and the corresponding sources. In this paper, we propose a new Bayesian learning method for cases where the matching relationship is not given and off-grid error is considered. To achieve this, first we propose a new basis generator, which casts the localization problem within the Bayesian learning scheme. Then, we modify the existing sparse Bayesian inference (SBI) approaches and explore the priors on fingerprinting weights, resulting in two intermediate algorithms. On these foundations, a subspace-based robust SBI (SRSBI) algorithm is proposed as the core of this paper. SRSBI is highlighted by its ability to work free from iteration when estimating off-grid targets. What' more, SRSBI offers considerable robustness against initial guesses of hyper-parameters. Numerical simulations demonstrate the superiority of SRSBI in terms of accuracy, robustness and speed, compared to the other reported ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.