Abstract

Summary This work presents an analytical solution for the pseudosteady-state (PSS) flow in a hydraulically fractured stratified reservoir with finite fracture conductivity in the presence of interlayer crossflows. Specifically, a three-layer configuration is considered, with the midlayer hydraulically fractured and sandwiched between two adjacent layers feeding the midlayer by crossflows. The circular drainage area is approximated as elliptical, allowing the problem to be solved in elliptical coordinates analytically. Explicit expressions in the physical-variable space for the dimensionless productivity index (PI) and the wellbore-pressure drawdown for the PSS flow of such a hydraulically fractured system with interlayer crossflows are derived for the first time. Compared with the case without interlayer crossflows, the dimensionless PI is reduced because of additional pressure drawdown occurring in the sandwiching layers; on the other hand, the time rate of increase of the pressure drawdown at the wellbore is also decreased because of the addition of the producible fluid stored in the sandwiching layers. This slower time rate of increase of the wellbore-pressure drawdown prolongs the PSS production period, which can lead to a larger accumulative production. It is also shown that when the layers have comparable thickness, fracturing the higher-permeability layer provides the best performance because the wellbore-pressure drawdown experiences the slowest time rate of increase during the PSS flow period. The analytical solution can also be used for fracture-design optimization as well as production-decline analysis for fractured stratified systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.