Abstract

In animal movement research, the probability density function (PDF) of the time-integrated Brownian bridge (TIBB) is used to delineate important regions on the basis of tracking data. Here, it is assumed that an animal performs a Brownian bridge between the data points. As such, the location at any moment in time of an individual performing a Brownian bridge is described by a normal distribution. The (time-independent) marginal probability density at a given point, i.e., the value of the PDF of the TIBB at that point, is obtained by averaging these normal distributions over time. To the best of our knowledge, the PDF of the TIBB is thus far always computed through the use of numerical integration methods. Here, we demonstrate that it is nevertheless possible to derive its analytical expression. Although the two-dimensional setting is the most interesting one for animal movement studies, also the one- and, in general, the n-dimensional setting are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.