Abstract

Recently it has been proposed that a strange logarithmic expression for the so-called Barbero-Immirzi parameter, which is one of the ingredients that are necessary for Loop Quantum Gravity (LQG) to predict the correct black hole entropy, is not another sign of the inconsistency of this approach to quantization of General Relativity, but is rather a meaningful number that can be independently justified in classical GR. The alternative justification involves the knowledge of the real part of the frequencies of black hole quasinormal states whose imaginary part blows up. In this paper we present an analytical derivation of the states with frequencies approaching a large imaginary number plus ln 3 / 8 pi M; this constant has been only known numerically so far. We discuss the structure of the quasinormal states for perturbations of various spin. Possible implications of these states for thermal physics of black holes and quantum gravity are mentioned and interpreted in a new way. A general conjecture about the asymptotic states is stated. Although our main result lends some credibility to LQG, we also review some of its claims in a critical fashion and speculate about its possible future relevance for Quantum Gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.