Abstract

We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number, N, of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approximate center. We show that, in terms of total number of addition and translation of cuts, our algorithm has the same polynomial worst case complexity as theirs [3]. However, the total number of steps, where steps consist of (damped) Newton steps, function evaluations and arithmetic operations, required to update from one approximate center to another is \(\), where e is the radius of the largest ball contained in the feasible set. In the second case, the convex set is defined by an infinite number of certain strongly convex quadratic inequalities. We adapt the same quadratic cut method for the first case to the second one. We show that in this case the quadratic cut algorithm is a fully polynomial approximation scheme. Furthermore, we show that, at each iteration, k, the total number steps (as described above) required to update from one approximate center to another is at most \(\), with e as defined above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.