Abstract
Large volume of educational data has led to more challenging in predicting student’s performance. In Malaysia currently, study about the performance of students in Malaysia institutions is very little being addressed. The previous studies are still insufficient to identify what factors contribute to student’s achievements and lack of investigations on exploring pattern of student’s behaviour that affecting their academic performance within Malaysia context. Therefore, predicting student’s academic performance by using decision trees is proposed to improve student’s achievements more effectively. The main objective of this paper is to provide an overview on predicting student’s academic performance using by using data mining techniques. This paper also focuses on identifying the pattern of student’s behaviour and the most important attributes that impact to the student’s achievement. By using educational data mining techniques, the students, lecturers and academic institution are able to have a better understanding on the student’s achievement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.