Abstract

The numerical solution of the one-dimensional Klein–Gordon equation on an unbounded domain is analyzed in this paper. Two artificial boundary conditions are obtained to reduce the original problem to an initial boundary value problem on a bounded computational domain, which is discretized by an explicit difference scheme. The stability and convergence of the scheme are analyzed by the energy method. A fast algorithm is obtained to reduce the computational cost and a discrete artificial boundary condition (DABC) is derived by the Z-transform approach. Finally, we illustrate the efficiency of the proposed method by several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.