Abstract

The problem of a stationary mathematically sharp semi-infinite crack in an FCC crystal is considered. We adopt a geometrically rigorous formulation of crystalline plasticity accounting for finite deformations and finite lattice rotations, as well as for the full three-dimensional crystallographic geometry of the crystal. A comparison of results with earlier small-strain solutions reveals some notable differences. These include the expected development of finite deformations and rotations near the crack tip, but also discrepancies such as a considerable spread of the plastic zones. In addition, nearly self-similar, square-root singular fields are obtained within the portion of the plastic zone where the crystal is in a state of high positive hardening. The results suggest that both finite-deformation and lattice rotation effects, as well as the details of the hardening law, strongly influence the structure of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.