Abstract

Understanding atmospheric water vapor patterns can inform regional understanding of water use, climate patterns and hydrologic processes. This research uses Airborne Visible Infrared Imaging Spectrometer (AVIRIS) reflectance and water vapor imagery to investigate spatial patterns of water vapor in California’s Central Valley on a June date in 2013, and 2015, and relates these patterns to surface characteristics and atmospheric properties. We analyze water vapor imagery at two scales: regional and agricultural field, to examine how the slope, intercept, and trajectory of water vapor interact with the landscape in a highly diverse and complex agricultural setting. At the field scale, we found significant quadratic relationships between water vapor slope and wind magnitude in both years (p<0.001). Results showed a positive correlation between crop water use and the frequency with which crops showed directional agreement between wind and water vapor (r = 0.23). At the regional scale, we found patterns of water vapor that indicate advection of moisture across the scene. Water vapor slope was inversely correlated to field size with correlations of -0.37, and -0.28 for 2013 and 2015. No correlation was found between green vegetation fraction and vapor slope (r = 0.001 in 2013, r = 0.02 in 2015), but a weak correlation was found for the intercept (r = 0.11 in 2013, r = 0.26 in 2015). These results lead us to conclude that accumulation of water vapor above fields in these scenes is observable with AVIRIS-derived water vapor imagery whereas advection at the field level was inconsistent. Based on these results, we identify new opportunities to use and apply water vapor imagery to advance our understanding of hydro-climatic patterns and applied agricultural water use.

Highlights

  • Boundary layer atmospheric water vapor is a critical element of climate, an indicator of land surface hydrologic processes, and a potent greenhouse gas [1,2]

  • More work is needed in order to refine understanding of the water vapor signal in a complex agricultural environment, the results suggest that this technique could be of use for crop water analyses in agricultural areas that experience less variation in crop type, wind, and field size than the Central Valley of California

  • We tested a series of hypotheses primarily focusing on advected moisture at field and regional scales, assessing patterns through a linear fit of water vapor surfaces at the field scale

Read more

Summary

Introduction

Boundary layer atmospheric water vapor is a critical element of climate, an indicator of land surface hydrologic processes, and a potent greenhouse gas [1,2]. Analysis of vapor patterns at a fine spatial scale can inform climate and plant water use studies [3,4]. Imaging spectrometers such as NASA’s Airborne Visible Infrared Imaging Spectrometer (AVIRIS) measure. Trends of water vapor over agricultural fields the same manner, and did not have any special privileges to these data

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.