Abstract

We give bounds on heuristics and relaxations for the problem of determining a maximum weight hamiltonian circuit in a complete, undirected graph with non-negative edge weights. Three well-known heuristics are shown to produce a tour whose weight is at least half of the weight of an optimal tour. Another heuristic, based on perfect two-matchings, is shown to produce a tour whose weight is at least two-thirds of the weight of an optimal tour. Assignment and perfect two-matching relaxations are shown to produce upper bounds that are, respectively, at most 2 and 3/2 times the optimal value. By defining a more general measure of performance, we extend the results to arbitrary edge weights and minimization problems. We also present analogous results for directed graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.