Abstract
Motivated by the virtual testing of asphalt concrete, the North Carolina State University research team has developed an algorithm to computationally generate air voids. After examining the X-ray tomographic images of real asphalt concrete microstructure, we concluded that the air void's shape and size are affected primarily by the surrounding local aggregate structure. Building on this observation, we developed an algorithm to generate random but representative air void configurations inside a given microstructure. By applying the algorithm to scanned aggregate structures, we show that the generated air voids not only look visually similar to actual air voids, but also are effective in capturing modulus reduction. The algorithm is included in a virtual aggregate structure generation framework, resulting in a streamlined virtual fabrication procedure for asphalt concrete that can qualitatively capture the effects of accelerated degradation due to the presence of air voids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.