Abstract

In order to overcome the difficulty in lung parenchymal segmentation due to the factors such as lung disease and bronchial interference, a segmentation algorithm for three-dimensional lung parenchymal is presented based on the integration of surfacelet transform and pulse coupled neural network (PCNN). First, the three-dimensional computed tomography of lungs is decomposed into surfacelet transform domain to obtain multi-scale and multi-directional sub-band information. The edge features are then enhanced by filtering sub-band coefficients using local modified Laplacian operator. Second, surfacelet inverse transform is implemented and the reconstructed image is fed back to the input of PCNN. Finally, iteration process of the PCNN is carried out to obtain final segmentation result. The proposed algorithm is validated on the samples of public dataset. The experimental results demonstrate that the proposed algorithm has superior performance over that of the three-dimensional surfacelet transform edge detection algorithm, the three-dimensional region growing algorithm, and the three-dimensional U-NET algorithm. It can effectively suppress the interference coming from lung lesions and bronchial, and obtain a complete structure of lung parenchyma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.