Abstract

Intelligibility listening tests are necessary during development and evaluation of speech processing algorithms, despite the fact that they are expensive and time consuming. In this paper, we propose a monaural intelligibility prediction algorithm, which has the potential of replacing some of these listening tests. The proposed algorithm shows similarities to the short-time objective intelligibility (STOI) algorithm, but works for a larger range of input signals. In contrast to STOI, extended STOI (ESTOI) does not assume mutual independence between frequency bands. ESTOI also incorporates spectral correlation by comparing complete 400ms length spectrograms of the noisy/processed speech and the clean speech signals. As a consequence, ESTOI is also able to accurately predict the intelligibility of speech contaminated by temporally highly modulated noise sources in addition to noisy signals processed with time-frequency weighting. We show that ESTOI can be interpreted in terms of an orthogonal decomposition of short-time spectrograms into intelligibility subspaces, i.e., a ranking of spectrogram features according to their importance to intelligibility. A free MATLAB implementation of the algorithm is available for noncommercial use at http://kom.aau.dk/~jje/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.