Abstract

The abstract mathematical theory of partial differential equations (PDEs) is formulated in terms of manifolds, scalar fields, tensors, and the like, but these algebraic structures are hardly recognizable in actual PDE solvers. The general aim of the Sophus programming style is to bridge the gap between theory and practice in the domain of PDE solvers. Its main ingredients are a library of abstract datatypes corresponding to the algebraic structures used in the mathematical theory and an algebraic expression style similar to the expression style used in the mathematical theory. Because of its emphasis on abstract datatypes, Sophus is most naturally combined with object‐oriented languages or other languages supporting abstract datatypes. The resulting source code patterns are beyond the scope of current compiler optimizations, but are sufficiently specific for a dedicated source‐to‐source optimizer. The limited, domain‐specific, character of Sophus is the key to success here. This kind of optimization has been tested on computationally intensive Sophus style code with promising results. The general approach may be useful for other styles and in other application domains as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.