Abstract

Compressed sensing is a relatively new mathematical paradigm that shows a small number of linear measurements are enough to efficiently reconstruct a large dimensional signal under the assumption the signal is sparse. Applications for this technology are ubiquitous, ranging from wireless communications to medical imaging, and there is now a solid foundation of mathematical theory and algorithms to robustly and efficiently reconstruct such signals. However, in many of these applications, the signals of interest do not only have a sparse representation, but have other structure such as lattice-valued coefficients. While there has been a small amount of work in this setting, it is still not very well understood how such extra information can be utilized during sampling and reconstruction. Here, we explore the problem of integer sparse reconstruction, lending insight into when this knowledge can be useful, and what types of sampling designs lead to robust reconstruction guarantees. We use a combination of combinatorial, probabilistic and number-theoretic methods to discuss existence and some constructions of such sensing matrices with concrete examples. We also prove sparse versions of Minkowski’s Convex Body and Linear Forms theorems that exhibit some limitations of this framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.